Protect Your Eye
from harmful UV rays
Reduces Digital Eye Strain
Filters Blue Light
100% UV Protection
Scratch Resistance
Protect Your Eye
from harmful UV rays
Reduces Digital Eye Strain
Filters Blue Light
100% UV Protection
Scratch Resistance
from harmful UV rays
Reduces Digital Eye Strain
Filters Blue Light
100% UV Protection
Scratch Resistance
from harmful UV rays
Reduces Digital Eye Strain
Filters Blue Light
100% UV Protection
Scratch Resistance
Protect Your Eyes from Harmful UV rays
There are lenses that help reduce exposure to harmful blue light. Accura Blue Block lens selectively filter Harmful Blue Light and provide 99% protection from UV rays and harmful blue lights.
Enables clear out blue sight to reduce dangerous outcomes. While blue light glasses and lenses sincerely use a blue light filter coating. By wearing accura blue block lens, it reduces the amount of blue light entering into your eyes,contrasts are improved by reducing screen brightness, flickering and eye fatigue to provide a strain-free visual experience while providing the most complete protection.
Another valuable lenses cure is an invisible color that ultraviolet (UV) gentle. Similarly as sunscreen keeps the sunlight based UV beams from hurting your pores and skin, UV protection for eyeglass lenses block those indistinguishable rays harming your eyes from digital screens like Smartphones, PC, Tablet, etc.
Blue blocking lens is also called as digital screen protection, computer screen protection, smartphone screen protection.
Every pair of glasses may be converted into a couple of sun shades of your choice, presenting ideal UV safety and supplying you with superior imaginative and prescient in one blue cut lens. And those lenses come with everything you'll expect: progressed comparison perception, much less glare and an anti-reflective coating. It's best now not to compromise while choosing blue block lenses.
Features of Accura Blue Block Lenses:
Lenses availability in SV, Progressive, Round bifocals and computer lenses.
Visible light is much more complex than you might think.
Stepping outdoors into sunlight; flipping on a wall switch indoors; turning on your computer, phone or other digital device — all of these things result in your eyes being exposed to a variety of visible (and sometimes invisible) light rays that can have a range of effects.
Most people are aware that sunlight contains visible light rays and also invisible ultraviolet rays that can tan or burn the skin. But what many don't know is that the visible light emitted by the sun comprises a range of different-colored light rays that contain different amounts of energy.
Sunlight contains red, orange, yellow, green and blue light rays and many shades of each of these colors, depending on the energy and wavelength of the individual rays (also called electromagnetic radiation). Combined, this spectrum of colored light rays creates what we call "white light" or sunlight.
Without getting into complicated physics, there is an inverse relationship between the wavelength of light rays and the amount of energy they contain. Light rays that have relatively long wavelengths contain less energy, and those with short wavelengths have more energy.
Rays on the red end of the visible light spectrum have longer wavelengths and, therefore, less energy. Rays on the blue end of the spectrum have shorter wavelengths and more energy.
The electromagnetic rays just beyond the red end of the visible light spectrum are called infrared — they are warming, but invisible. (The "warming lamps" you see keeping food warm at your local eatery emit infrared radiation. But these lamps also emit visible red light so people know they are on! The same is true for other types of heat lamps.)
On the other end of the visible light spectrum, blue light rays with the shortest wavelengths (and highest energy) are sometimes called blue-violet or violet light. This is why the invisible electromagnetic rays just beyond the visible light spectrum are called ultraviolet (UV) radiation.
UV rays have higher energy than visible light rays, which makes them capable of producing changes in the skin that create a suntan. In fact, the bulbs in tanning booths emit a controlled amount of UV radiation specifically for this reason.
But too much exposure to UV causes a painful sunburn — and even worse, can lead to skin cancer. These rays also can cause sunburned eyes — a condition called photokeratitis or snow blindness.
But ultraviolet radiation, in moderation, also has beneficial effects, such as helping the body manufacture adequate amounts of vitamin D.
Generally, scientists say the visible light spectrum comprises electromagnetic radiation with wavelengths ranging from 380 nanometers (nm) on the blue end of the spectrum to about 700 nm on the red end. (By the way, a nanometer is one billionth of a meter — that's 0.000000001 meter!)
Blue light generally is defined as visible light ranging from 380 to 500 nm. Blue light sometimes is further broken down into blue-violet light (roughly 380 to 450 nm) and blue-turquoise light (roughly 450 to 500 nm).
So approximately one-third of all visible light is considered high-energy visible (HEV) or "blue" light.
Like ultraviolet radiation, visible blue light — the portion of the visible light spectrum with the shortest wavelengths and highest energy — has both benefits and dangers. Here are important things you should know about blue light:
Sunlight is the main source of blue light, and being outdoors during daylight is where most of us get most of our exposure to it. But there are also many man-made, indoor sources of blue light, including fluorescent and LED lighting and flat-screen televisions.
Most notably, the display screens of computers, electronic notebooks, smartphones and other digital devices emit significant amounts of blue light.
The amount of HEV light these devices emit is only a fraction of that emitted by the sun. But the amount of time people spend using these devices and the proximity of these screens to the user's face have many eye doctors and other health care professionals concerned about possible long-term effects of blue light on eye health.
The short-wavelength, high-energy light rays on the blue end of the visible light spectrum scatter more easily than other visible light rays when they strike air and water molecules in the atmosphere. The higher degree of scattering of these rays is what makes a cloudless sky look blue.
Anterior structures of the adult human eye (the cornea and lens) are very effective at blocking UV rays from reaching the light-sensitive retina at the back of the eyeball. In fact, less than one percent of UV radiation from the sun reaches the retina, even if you aren't wearing sunglasses.
(Keep in mind, though, that sunglasses that block 100 percent of UV are essential to protect these and other parts of the eye from damage that could lead to cataracts, snow blindness, a pinguecula and/or pterygium, and even cancer.)
On the other hand, virtually all visible blue light passes through the cornea and lens and reaches the retina.
The fact that blue light penetrates all the way to the retina (the inner lining of the back of the eye) is important, because laboratory studies have shown that too much exposure to blue light can damage light-sensitive cells in the retina.
This causes changes that resemble those of macular degeneration, which can lead to permanent vision loss.
Although more research is needed to determine how much natural and man-made blue light is "too much blue light" for the retina, many eye care providers are concerned that the added blue light exposure from computer screens, smartphones and other digital devices might increase a person's risk of macular degeneration later in life.
Because short-wavelength, high energy blue light scatters more easily than other visible light, it is not as easily focused. When you're looking at computer screens and other digital devices that emit significant amounts of blue light, this unfocused visual "noise" reduces contrast and can contribute to digital eye strain.
Research has shown that lenses that block blue light with wavelengths less than 450 nm (blue-violet light) increase contrast significantly. Therefore, computer glasses with yellow-tinted lenses may increase comfort when you're viewing digital devices for extended periods of time
Sign up to hear from us about BlueBlock lenses.